
DR
AF
T-
10
/1
9/
20
09
-1
7:2
9

GENERALIZED WITT SCHEMES IN ALGEBRAIC TOPOLOGY

JUSTIN NOEL

Abstract. We analyze the even-periodic cohomology of the space BU and some of its relatives
using the language of formal schemes as developed by Strickland. In particular, we connect
E0(BU) to the theory of Witt vectors and λ-rings. We use these connections to study the e�ect
of the coproduct arising from the tensor product on generalized Chern classes. We then exploit
this connection to simultaneously construct Husemoller's splitting of HZ∗

(p)
(BU) and Quillen's

splitting of MU(p).

1. Introduction

It is also very tempting to declare that at this date all such results on ordinary
homology [of BU and BSU] may be assumed known; and if they are not on
record, why, that is a defect in the papers written ten or twenty years ago, and
not in the present one. Unfortunately, a sense of duty impels me to sketch a
proof.

- J.F. Adams 1976

This paper picks up threads left by Ben-Zvi [BZ95] and Strickland [Str00b] and weaves them
together. In Ben-Zvi's minor thesis he observes that the cohomology ring H∗(BU) is the ring
of functions on the Cartier dual of the Witt scheme. While Strickland is developing the proper
foundations for making these kind of connections in [Str00b] he also remarks that the formal scheme
associated to E0(

∐
n≥0BU(n)), for E an even-periodic cohomology theory, is a graded λ-semiring

(or rig) object. Using Strickland's framework to analyze the E cohomology of a space by studying
the associated formal scheme Spf(E0(BU)) and the algebra of Witt schemes described in [BZ95,
Haz78], we will �esh out and connect these remarks.

This continues a tradition initiated by Morava in the 70's, a strong advocate of applying the
language and tools of algebraic geometry to the study of algebraic topology. Some of his ideas
eventually �owered into the �eld of derived algebraic geometry. In this paper, we will study some
of the ordinary algebraic geometry that motivated the creation of this blossoming �eld.

Witt vectors appear in many places in algebraic topology including the Husemoller-Witt splitting
[Hus71], Hodgkin's calculation of the K-theory of QS0 [Hod72], the classi�cation of bicommutative
Hopf algebras [Sch70, Goe98] and in the formulas for formal group laws [Rav00].

Individually the results below are in the literature although they may require some translation
since they appear in di�erent contexts. For example, our form of the algebraic splitting principle
Theorem 3.9, can be constructed from di�erent forms of the splitting principle that appear in
the literature. We have made a signi�cant e�ort to cite relevant sources, but some of the topics
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discussed below have been studied by many people for quite some time. By juxtaposing the results
spread out across the literature we aim to clarify the connections between them.

This paper is written for the general algebraic topologist. We therefore assume familiarity with
some category theory, especially representable functors and the Yoneda lemma as well as the theory
of vector bundles and classifying spaces laid out in [Hus94, May99]. But we do not assume the reader
is familiar with the basics of a�ne schemes or ind-objects. To keep this paper mostly self-contained,
in Section 2 we provide a short treatment of these topics referring to [Str00b] for a more in-depth
treatment.

First, in Section 2.1 we recall the relevant material about schemes, while emphasizing the role
of the representing algebra. After reviewing the fundamentals of ind and pro-objects in Section 2.2
we then proceed to the theory of formal schemes in Section 2.3 and Cartier duality in Section 2.4.

In Section 3 we introduce the star players for the algebraic geometry team. We introduce
our theory of symmetric schemes which provide a simple intermediary between Λ-schemes and
Witt schemes. After recalling some aspects of the theory of λ-rings and Witt vectors, including
their p-local splittings, (see [Haz78, BZ95] or the recent survey [Haz08]) we explicitly describe the
equivalences between them. Symmetric schemes encode the splitting principle rather explicitly,
allowing us to easily de�ne operations on symmetric schemes.

In Section 4 we introduce the players for the algebraic topology team. We identify the schemes
associated to the even-periodic co/homology of spaces related to BU with some of the schemes
above and apply our algebraic results. In particular, we use the p-local splitting of the Witt scheme
to construct the Husemoller splitting of the cohomology of BU and Quillen's splitting of MU(p)

simultaneously. The observation that these splittings can be constructed simultaneously appears
to be new.

We also apply this framework to give low-dimensional formulas�which although well-known to
some experts, apparently have never been published�for the generalized Chern class of a tensor
product of (stable) vector bundles in Section 5.

1.1. Conventions. In this paper:

• A ring will always be commutative, associative, and unital.
• A ring without identity will be called a rng.
• A ring without negatives (additive inverses) will be called a rig.
• All binary operations considered will be associative and dually all co-operations will be
coassociative.

• All schemes and formal schemes will be a�ne.

2. Affine algebraic geometry

2.1. Schemes. We are interested in studying the cohomology of suitably nice spaces that admit a
homotopy commutative and unital product. The cohomology rings of such spaces come equipped
with a cocommutative and counital coproduct. Being more comfortable with product structures we
choose to work in the opposite category of rings or more precisely, the category of a�ne schemes. In
addition to easing our study of the comultiplicative structure on these cohomology rings, schemes
provide interesting alternative characterizations of these rings.

Recall that the essential image of an embedding F : C → D is the full subcategory of D whose
objects are isomorphic to some object in the image of F.
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De�nition 2.1. The category of a�ne schemes, Sch , is de�ned to be the essential image of the
Yoneda embedding:

Spec : Ring op −→ Set Ring

Spec(R) : S 7→ Ring(R,S).

The value of a scheme X on a ring S, is called the set of S-points of X which we denote by
X(S) = Sch(Spec(S), X).

By de�nition, Sch is equivalent to Ring op.

Example 2.2. The a�ne line A1 = Spec(Z[x]), takes a ring to its underlying set. In other words,
A1 is isomorphic to the forgetful functor from rings to sets.

Example 2.3. The scheme A1 \{∗} ∼= Spec(Z[x, x−1]), takes a ring to the set of units in that ring.

Example 2.4. The scheme Niln ∼= Spec(Z[x]/(xn)), takes a ring R to the set of x in R, such that
xn = 0.

To discuss various algebraic categories in Sch , such as group schemes, we will need �nite products.
The product in schemes arises from the tensor product in rings. As an example we consider a�ne
n-space

An ∼=
(
A1
)×n

= Spec Z[t1]× · · · × Spec Z[tn]
∼= Spec(Z[t1]⊗ · · · ⊗ Z[tn])
∼= Spec Z[t1, . . . , tn].

Remark 2.5. In fact, Sch is complete and cocomplete because Ring is complete and cocomplete,
however we must comment that the colimits in a�ne schemes constructed using this equivalence
do not generally agree with those of the larger categories of non-a�ne schemes or Set Ring . Since
the reader might have little intuition for schemes, we will try to emphasize their role as set-valued
functors and clarify the di�erences between these perspectives.

Later we will need to work with k-algebras, for an arbitrary ring k, whose scheme theoretic
analogues are schemes over Spec(k). The category of schemes over Spec(k) is equivalent to the
essential image of the Yoneda embedding:

Speck : k-alg op −→ Setk-alg ,

where k-alg is the category of k-algebras (i.e., rings under k). We denote the category of schemes
over Spec(k) by Schk. Note that the isomorphism of categories Sch ∼= SchZ, shows that the relative
theory is more general.

Remark 2.6. In our examples we have elected to de�ne our schemes over Z, but we could just as
easily de�ne their analogues over an arbitrary base ring. Rather than clutter the notation we have
elected to leave it to the reader to replace the integers with her preferred base whenever she sees
�t.

Tensor products over k correspond to products in Schk and they agree with those in Setk-alg .
Using this product structure we can construct the category of group schemes over Spec k, GrpSch

k
.

We should remark that group schemes are the dual of a more familiar concept:
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Proposition 2.7. The categories of bicommutative Hopf algebras over k and group schemes over
k are antiequivalent.

Example 2.8. The ring Z[x] with augmentation ε+ : Z[x] → Z determined by ε+(x) = 0 is an
augmented Z-algebra. The maps

ε+ : Z[x] → Z x 7→ 0
∆+ : Z[x] → Z[x1, x2] x 7→ x1 ⊗ 1 + 1⊗ x2

χ+ : Z[x] → Z[x] x 7→ −x
make Z[x] into a cocommutative cogroup (i.e., a bicommutative Hopf algebra). Applying Spec
to Z[x] and the above maps de�nes the additive group scheme Ga. We can identify Ga with the
forgetful functor from rings to abelian groups.

Example 2.9. The ring
Z[x±] ≡ Z[x, x−1]

with augmentation ε×(x) = 1 can be made into a cocommutative cogroup using the maps

ε× : Z[x±] → Z x 7→ 1
∆× : Z[x±] → Z[x±1 , x

±
2 ] x 7→ x1 ⊗ x2

χ× : Z[x±] → Z[x±] x 7→ x−1.

The corresponding group scheme Gm is called the multiplicative group scheme since it takes a ring
to its group of units.

Remark 2.10. As an aside, we note that Gm plays a role in extending the antiequivalence between
the categories of rings and a�ne schemes to graded rings. There is an equivalence between the
category of graded algebras and the category of comodules over the Hopf algebra representing Gm

[Str00b, 2.96]. Applying Spec to everything in sight we end up with an antiequivalence between
the category of graded algebras and the Gm-equivariant category of a�ne schemes.

We can combine some of the structure in Example 2.9 with that of Example 2.8 to de�ne the
identity ring scheme.

Example 2.11. The ring Z[x] with augmentations ε+ and ε× and comultiplications ∆+ and ∆×
equipped with the coinverse map χ+ make Z[x] into a coring. By applying Spec we obtain the ring
scheme Id, which takes a ring to itself.

2.2. Ind-objects and pro-objects. Before proceeding to the theory of formal schemes, we need to
recall some standard facts about ind/pro objects. We encourage the reader to consult [Joh82, Gro64]
for a more thorough treatment of this material.

De�nition 2.12. A small category D is called co�ltered if

(1) D is non-empty.
(2) For every X,Y ∈ D, there exists an object Z ∈ D and morphisms f : Z → X and g : Z → Y.
(3) For every two arrows f, g : X → Y there exists an object Z ∈ D and a morphism h : Z → X

such that fh = gh.

It follows immediately from the de�nition that any product of co�ltered categories is co�ltered.

De�nition 2.13. Given a category C with small hom-sets and a functor F : D → C from a co�ltered
category D, we de�ne the ind-object “colim”F ∈ SetC

op
by

“colim”F ∈ SetC
op
≡ colim

i∈D
C(−, F (i)),
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where the colimit is computed in SetC
op
.

We compute the morphisms between two ind-objects to be

SetC
op
(“colim”F, “colim”G) = SetC

op
(colim
i∈D

C(−, F (i)), colim
j∈E

C(−, G(j)))

∼= lim
i∈D

SetC
op
(C(−, F (i)), colim

j∈E
C(−, G(j)))

∼= lim
i∈D

colim
j∈E

C(F (i), G(j))).

The �rst isomorphism follows from the de�nition of a colimit and the second by the Yoneda lemma
and that colimits in functor categories are computed pointwise.

It follows that the full subcategory of SetC
op
consisting of objects isomorphic to an ind-object has

small hom-sets. This is the category Ind C of ind-objects in C.
The functor category SetC

op
is complete because Set is complete. If C also has �nite products then

the product
“colim”F × “colim”G ∈ SetC

op

can be realized as an ind-object:

“colim”F × “colim”G = colim
i∈D

C(−, F (i))× colim
j∈E

C(−, G(j))(2.14)

∼= colim
(i,j)∈D×E

C(−, F (i)×G(j)),(2.15)

where the isomorphism follows from co�ltered colimits commuting with �nite products in Set [Bor94,
2.13.4]. Using this we can relate the algebraic categories in C to those in Ind C.

If C is equivalent to a category of representable functors then we can think of Ind C as formally
adjoining co�ltered colimits to C :

Theorem 2.16 ([Joh82, Section VI]). Suppose that D is the subcategory of functors in SetC
op

such that for any object X ∈ Obj(D), X ∼= C(−, Y ) for some Y. Then IndD is equivalent to the

subcategory E of functors in SetC
op
, such that for all X ∈ Obj(E), X = colimYi. where Yi ∈ D.

The de�nition of a pro-object is precisely dual to that of an ind-object.

Notation 2.17. We denote the category of pro-objects in C by Pro C.
Under the tautological equivalence

(2.18) Pro C ' Ind Cop,

we obtain results for pro-objects dual to those above.

2.3. Formal schemes. Following [Str00b], we de�ne the category of formal schemes, FSch , as the
full subcategory of objects in Set Ring which are isomorphic to a co�ltered colimit of a�ne schemes.
This category is equivalent to the category of ind-schemes. By identifying a scheme with a constant
ind-scheme we can embed Sch as a full subcategory of FSch .

Using the equivalence with Ind-schemes, FSch is equivalent to the opposite category of pro-rings.
A pro-ring R = “lim”Ri can be identi�ed with the topological ring R′ = limRi where the inverse
limit is taken in topological spaces and each Ri represents a discrete topological space [Joh82]. In
this description a map of pro-rings corresponds to a continuous map. When the context is clear we
will identify such a topological ring with its associated pro-ring.

The equivalence Pro Ring op to FSch is given by the functor

Spf : “lim”Ri 7→ colim Spec(Ri).
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Remark 2.19. This generalizes the de�nition of formal schemes in algebraic geometry. An a�ne

formal scheme in that context is one of the form Spf(R̂), where R̂ = “lim”R/In ([Har77, Section
II.9]). Each such formal scheme has a geometric interpretation, that does not always hold in our
category.

Example 2.20. The formal a�ne line

Â1 = Spf(ZJxK)
= colim Spec(Z[x]/xn)
∼= colim Niln
= Nil,

takes a ring to the set of nilpotent elements of that ring.

Notation 2.21. Analogous to the informal case, we have the category of formal schemes over a
given (formal) scheme X, which we denote by FSchX .

Since colimits commute with (co�ltered) colimits we see that FSch is cocomplete and its colimits
arise from those in schemes. By Theorem 2.16, co�ltered colimits of formal schemes are preserved
under the inclusion FSch → Set Ring .

Using Equation 2.15 we see that the products in schemes are related to the products in formal
schemes. For example, if X = colimi∈I Xi and Y = colimj∈J Yj then

X × Y ∼= colim
(i,j)∈I×J

Xi × Yj .

Dually there is a coproduct on pro-rings, called the completed tensor product. As an example,

we see that Â2 is represented by
ZJxK⊗̂ZJyK ∼= ZJx, yK.

Now that we have �nite products we can de�ne formal groups, formal rings, etc.

Example 2.22. The additive formal group Ĝa takes a ring R to Nil+(R), the additive group

of nilpotent elements of R. Clearly its underlying formal scheme is isomorphic to Â1. Fixing an
isomorphism, then the additive group structure is de�ned by the following maps:

ε+ : ZJxK → Z x 7→ 0
∆+ : ZJxK → ZJx1, x2K x 7→ x1 ⊗ 1 + 1⊗ x2

χ+ : ZJxK → ZJxK x 7→ −x.

Example 2.23. The multiplicative formal group Ĝm takes a ring R to the multiplicative group

(1 − Nil(R))×. Identifying this set with Nil(R) we see that Ĝm is isomorphic to Â1 as a formal
scheme. Fixing an isomorphism, the group structure is de�ned by the following maps:

ε× : ZJxK → Z x 7→ 0
∆× : ZJxK → ZJx1, x2K x 7→ x1 ⊗ 1 + 1⊗ x2 − x1 ⊗ x2

χ× : ZJxK → ZJxK x 7→ −
∑
i≥0 x

i+1.

Remark 2.24. Hazewinkel refers to the above formal group law as Ĝ−m [Haz78]. The multiplicative
formal group is usually de�ned to represent the multiplicative group (1 + Nil(R))×. However, the
formal group law in 2.23 naturally occurs as an E∞ orientation on complex K-theory, while the
standard example does not [And95].
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2.4. Cartier duality. Since our interest is actually in the ring that represents a given scheme, it
is desirable to have a theory of duality for schemes that corresponds to taking the linear dual of the
representing ring. Of course, for such a duality to exist we are going to need that the dual of the
representing ring is another commutative unital ring, which means that the original scheme needs
to be a commutative group scheme. In order for a group scheme to be canonically isomorphic to
its double dual we are going to need that the representing ring be a dualizable module. Since we
also want our theory of duality to apply to formal schemes we are going to need some assumptions
about the maps in the pro-systems that de�ne the representing pro-rings. The classical theory of
Cartier duality (see [Dem72]), once suitably extended as in [Str00b, Section 6.4], suits our purposes.

Cartier duality is the analogue of Pontryagin duality for group schemes. The classical theory
of Cartier duality requires that we work over a �eld and as a result safely ignores some of the
issues described above. When working over more general rings we will need some new algebraic
restrictions, to obtain a well-behaved duality theory.

We start by considering a suitable category of objects dual to k-algebras. Identifying k-algebras
with the category of commutative monoids in the category of k-modules using the tensor product
structure, we see that the appropriate dual is the category of cocommutative comonoids in the
category of k-modules or, equivalently, counital, cocommutative coalgebras.

De�nition 2.25. Suppose U is a k-coalgebra free on a basis I. Let DI be the category whose objects
are the k-subcoalgebras of U which are free modules on a �nite subset of I and whose morphisms
are inclusions. If there exists a basis I such that

U ∼= colim
DI

Ui

then we say I is a good basis for U. Those coalgebras which admit a good basis will be called basic.

Notation 2.26. We denote the full subcategory of basic coalgebras in the category of coalgebras by
BCoAlg .

De�nition 2.27. To a basic coalgebra U = colimUi, we de�ne the formal scheme SchU =
colim SpecU∗i , where U

∗
i is the linear dual Modk(Ui, k).

Here limU∗i inherits its multiplicative structure from the coalgebra structure on Ui (see [Str00b,
4.59]). It follows that Sch does indeed de�ne a functor from basic coalgebras to formal schemes
whose image CFSch , we call coalgebraic formal schemes.

We construct an inverse functor c : CFSch → BCoAlg by setting

c(colim SpecU∗i ) = colimU∗∗i
∼= colimUi.

If our coalgebra U has the additional multiplicative structure making it a commutative Hopf algebra
then SpecU (SchU) is a commutative (formal) group scheme. Given a formal coalgebraic group
scheme

Ĝ ∼= colim SpecU∗i ,

we de�ne the Cartier dual to be

DĜ = Spec cĜ
∼= Spec colimUi
∼= SpecU.



DR
AF
T-
10
/1
9/
20
09
-1
7:2
9GENERALIZED WITT SCHEMES IN ALGEBRAIC TOPOLOGY 8

Restricting to those coalgebraic formal schemes that are actually informal schemes we can apply D
again to get

DDĜ = D Spec cĜ
= cSpec cĜ
∼= cSpecU
∼= colim SpecU∗i
∼= Ĝ.

This gives us a well-behaved duality on group schemes that has the e�ect of taking the linear dual
on the representing rings.

Example 2.28. The linear dual of the truncated polynomial algebra Z[x]/(xn−1) with x grouplike
(i.e., ∆x = x⊗ x) is the module

n−1⊕
i=0

Zei

with coproduct

∆ek =
n−1∑
i=0

ei ⊗ eσ(i)

where σ(i) ≡ k− i (mod n) and 0 ≤ σ(i) < n. The algebra structure is determined by the relations
eiej = δijei.We can see Spec Z[x]/(xn−1) is the group scheme whose R-points are the multiplicative
group of nth roots of unity in R (which might be trivial for a given R), while its Cartier dual is the
constant functor R→ Z/n.

Remark 2.29. For a coalgebraic commutative formal group scheme H one can de�ne (see [Str00a,
4.69]) the following scheme of maps in commutative formal groups

DH = GrpSch(H,Gm).

This de�nition of the functor D most closely resembles the classical de�nition of Cartier duality
and Strickland has shown that these de�nitions coincide [Str00a, 6.15].

3. Three perspectives

3.1. Symmetric schemes. We want to study operations on sets of monic polynomials. Some
of these operations are easier to describe under the assumption that the monic polynomials split.
As an intermediate step, we examine monic polynomials with a speci�ed splitting, then monic
polynomials that have a splitting before proceeding to general monic polynomials.

We will identify a split monic polynomial over R

f(x) =
n∑
i=0

bn−ix
i

=
n∏
i=0

(x− ti)

with its unordered set of roots {t1, . . . , tn} .



DR
AF
T-
10
/1
9/
20
09
-1
7:2
9GENERALIZED WITT SCHEMES IN ALGEBRAIC TOPOLOGY 9

De�nition 3.1. Let the nth splitting functor Splitn denote the functor from rings to sets that
takes a ring R to the set of split monic polynomials with coe�cients in R or, alternatively, the
corresponding sets of roots of those polynomials.

Remark 3.2. Note that Splitn is not a scheme, a�ne or otherwise, although it is related to a
stack.

De�nition 3.3. Let the nth representable splitting functor rSplitn be the a�ne scheme with the
following R-points

rSplitn(R) =

{
f(x) =

n∏
i=1

(x− ti), ti ∈ R

}
∼= Rn.

Clearly rSplitn is isomorphic to a�ne n-space and we have a natural transformation

U : rSplitn → Splitn
where we forget the ordering of the roots.

De�nition 3.4. A natural transformation

G : Splitn → Splitm,

is algebraic if there exists a natural transformation G̃ : rSplitn → rSplitm making the following
diagram commute:

rSplitn
eG //

U

��

rSplitm

U

��
Splitn

G // Splitn

Typically, we construct G from G̃ by checking that UG̃ factors through U, in which case we

abuse notation and write G instead of G̃ for the algebraic map. For example, we have the map

Fk : rSplitn → rSplitnk
sending (t1, . . . , tn) to ([k]t1, . . . , [k]tn), where [k]ti indicates repeat the root ti k-times. Passing
from ([k]t1, . . . , [k]tn) to {[k]t1, . . . , [k]tn} we see that reordering the ti's does not change the target
set, so the map Fk descends to give an algebraic map. We de�ne this map in terms of its R-points:

(3.5) Fk :
n∑
i=0

bn−ix
i =

n∏
i=1

(x− ti) 7→
nk∑
i=0

b
′

nk−ix
i =

n∏
i=0

(x− ti)k.

The coe�cient bi of the polynomial f(x) can be identi�ed with the elementary symmetric poly-
nomial

(−1)n−iσi(t1, . . . , tn)
in the roots t1, . . . , tn. Here the elementary symmetric functions σi(t1, . . . , tn) are de�ned by the
following generating function

n∏
i=1

(x+ ti) =
n∑
i=0

σn−ix
i.

If i ≤ n then σi(t1, . . . , tn) = σi(t1, . . . , tn, 0), giving us well-de�ned elementary symmetric
functions σi on �enough� variables.
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Theorem 3.6 (Newton [Hus94]). There is an isomorphism of algebras R[σ1, . . . , σn] ∼= R[t1, . . . , tn]Σn .

Since the coe�cients b′i in Equation 3.5 are symmetric in t1, . . . , tn they can be expressed as
polynomials in the elementary symmetric functions or, equivalently, as polynomials pi(b1, . . . , bn)
in the coe�cients of f. We can now drop the requirement that the polynomial splits and just use
the polynomials pi to de�ne operations on monic polynomials.

De�nition 3.7. Let the nth symmetric scheme symmn
∼= Spec(Z[b1, . . . , bn]) be the scheme satis-

fying

symmn(R) =

{
f(x) =

n∑
i=0

bn−ix
i | bi ∈ R, b0 = 1

}
and

We also have formal analogues of the above schemes.

De�nition 3.8. Let the nth formal splitting functor Ŝplitn be the formal scheme satisfying

Ŝplitn(R) =

{
f(x) ∈ ŝymmn(R) | f(x) =

n∏
i=1

(x− ti), ti ∈ Nil(R)

}
.

Let the nth formal symmetric scheme ŝymmn
∼= Spf(ZJb1, . . . , bnK) be the formal scheme satisfy-

ing

ŝymmn(R) =

{
f(x) =

n∑
i=0

bn−ix
i | b0 = 1 and bi ∈ Nil(R) for i > 0

}
.

Theorem 3.9 (Algebraic Splitting Theorem).

(1) An algebraic transformation of functors Splitn → Splitk determines a map of schemes
symmn → symmk.

(2) An algebraic transformation of functors Spliti × Splitj → Splitk determines a map of
schemes symmi × symmj → symmk.

(3) Two maps f1, f2 : symmm → symmk are equal if and only if f1Um = f2Um where Um :
rSplitm → symmm is the forgetful map.

(4) The same results hold for the formal analogues of the above schemes.

Proof. The argument that Fk induces a natural transformation symmn → symmnk given above
goes through mutatis mutandis to prove parts 1 and 2. Namely, in each of these cases we see that
the natural transformations on split monic polynomials de�ne polynomial maps on the coe�cients
which allow us to de�ne natural transformations on monic polynomials.

Part 3 follows from the fact that Um corresponds to the following injective map on representing
rings

Z[b1, . . . , bm] → Z[t1, . . . , tm]
bi 7→ σi(t1, . . . , tm).

�

The last claim allows us to deduce relations between maps by checking them on the representable
(formal) splitting functors.

This allows us to de�ne a panoply of natural transformations. Unless we say otherwise, for each
of the following de�nitions there is an analogous version for the corresponding formal scheme.
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De�nition 3.10. Applying Theorem 3.9, let ⊕i,j : symmi × symmj → symmi+j be the algebraic
map corresponding to

⊕i,j : Spliti × Splitj −→ Spliti+j

S × T 7→ S
∐

T.

In terms of R-points we have another simple description

⊕i,j : symmi × symmj → symmi+j

(f(x), g(x)) 7→ f(x)g(x).

Construction 3.11. Given an operation µ : Split1 × Split1 → Split1 (or equivalently symm1 ×
symm1 → symm1) we de�ne operations µi,j : symmi × symmj → symmij determined by

µi,j : Spliti × Splitj → Splitij

S × T 7→
∐

(s,t)∈S×T

µ(s, t).

When µ(r, t) = rt we will denote the operation µi,j by ⊗i,j .

Proposition 3.12. The operations µi,j de�ned above Construction 3.11 distribute over ⊕i,j .

Proof. This follows immediately from the de�nition of µi,j and Theorem 3.9. �

De�nition 3.13. Let the map i0 : symm0 −→ symm1, or equivalently (i0 : Split0 → Split1),
satisfying ∗ 7→ {0} . Similarly we have a map i1 : symm0 → symm1 (but not a map ŝymm0 →
ŝymm1) de�ned by ∗ 7→ {1} .

For each n we have an inclusion ι : ŝymmn → ŝymmn+1 de�ned as the composite

ŝymmn
∼= ŝymmn × ŝymm0

id×i0−−−→ ŝymmn × ŝymm1

⊕n,1−−−→ ŝymmn+1.

This map takes the monic polynomial f(x) to x ·f(x). Now taking a colimit over these maps inverts
x and since the colimit of formal schemes agrees with the colimit in Set Ring setting z = x−1 we
obtain:

De�nition 3.14. The formal scheme ŝymm0 = colim ŝymmn
∼= Spf ZJb1, b2, . . .K, satis�es

ŝymm0(R) =

{
f(z) =

n∑
i=0

biz
i | b0 = 1, n ∈ N, bi ∈ Nil(R) for i > 0

}
.

On R-points the inclusions

ŝymmn → ŝymm0

take f(x) to x−nf(x). Since �ltered colimits commute with �nite products the compatible system
of maps

ŝymmi × ŝymmj

⊕i,j //

ι×ι
��

ŝymmi+j

ι◦ι
��

ŝymmi+1 × ŝymmj+1

⊕i+1,j+1 // ŝymmi+j+2

de�nes an operation

⊕ : ŝymm0 × ŝymm0 → ŝymm0
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which we combine with
i0 : ŝymm0 → ŝymm1 → ŝymm0

to make ŝymm0
into a formal monoid scheme. The product on ŝymm0

corresponds to multiplication
of polynomials.

Moreover, polynomials whose constant coe�cient is one and other coe�cients are nilpotent form
a group under multiplication. Indeed, the multiplicative inverse of

f(z) = 1 +
n∑
i=1

biz
i

is a power series where the coe�cient of zn+k lies in

(b1, . . . , bn)k.

Since bi ∈ Nil(R) this ideal is zero for large k and we see that 1/f is actually a polynomial of the

correct form. It follows that ŝymm0
is a formal group scheme.

De�nition 3.15. The positive symmetric scheme is the scheme

ŝymm+ =
∐
i≥0

ŝymmi = colim
∐

0≤i≤n

ŝymmi

equipped with the rig structure de�ned by the maps ⊕i,j and ⊗i,j with the additive identity given by

the inclusion ŝymm0 → ŝymm+
and the multiplicative identify given by i0 followed by the inclusion

ŝymm1 → ŝymm+
.

De�nition 3.16. Assembling the maps

ι : ŝymmi → ̂symmi+1

into a map symm+ → ŝymm+
, we set

ŝymm ≡ colim
[
ŝymm+ → ŝymm+ → . . .

]
.

Note that if we restrict to the 0 component of ŝymm+ and then take colimits we obtain the

same system de�ning ŝymm0
. Hence the zeroth component of ŝymm is ŝymm0

and this component
inherits a multiplication from ŝymm.

Remark 3.17. There is nothing special about this multiplication. We can take any group operation
on ŝymm1 with unit i0 and extend it to de�ne rig schemes, ring schemes and rng schemes.

A formal group structure
F : ŝymm1 × ŝymm1 → ŝymm1

determines a map

F s : ŝymm+ × ŝymm+ → ŝymm+

that makes ŝymm+
into a formal rig scheme. Using Construction 3.11 we can de�ne maps

Fi,j : ŝymmi × ŝymmj → ŝymmij .

By construction these maps �t together and distribute over addition. This multiplicative inherits
its unital and associativity properties from F.

The colimit in 3.16 can be identi�ed with Grothendieck's group completion construction which
makes ŝymm into a formal ring scheme. After restricting this multiplicative structure to the 0
component we obtain:
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Proposition 3.18. A formal group structure

F : ŝymm1 × ŝymm1 → ŝymm1

determines a map

F s : ŝymm0 × ŝymm0 → ŝymm0

that makes ŝymm0
into a formal rng scheme.

Since the endomorphisms of a commutative group object always form a (generally non-commutative)
ring, every group object has a Z-module structure. Under this Z-action on a group object G with
multiplication µ, a positive integer n corresponds to the composite

[n] : G ∆n−1

−−−→ Gn
µn−1

−−−→ G.

Proposition 3.19. Let n be a positive integer and G a connected (formal) commutative group
scheme over a ring R containing Z[1/n]. Then the Z-module structure described above extends to a
Z[1/n]-module structure.

Proof. It su�ces to show that [n] is an isomorphism. On the Hopf-algebra representing G we see
that, modulo decomposables, [n] takes any indecomposable to n times itself (connectivity of our
Hopf algebra is key here). Since n is invertible over our base ring, this map is an isomorphism. �

If n = kl then [n] factors as [k] ◦ [l]. In the case G = ŝym
0
, we can still obtain a nontrivial

factorization when n is a prime p: [p] = Vp ◦ Fp. Where Vp and Fp are the following:

De�nition 3.20. Let the kth Frobenius operation Fk : ŝymm0 → ŝymm0 be the unique endomor-
phism satisfying

Fk : (1− az) 7→ (1− azk).

Remark 3.21. We can formally factorize any degree n polynomial in ŝymm0
into a product of

linear factors like the above. So this map is indeed determined by its behavior on a linear term.
Equivalently, we could have constructed this map using Theorem 3.9.

De�nition 3.22. Let the kth Verschiebung operation Vk : ŝymm0 → ŝymm0 be the unique endo-
morphism satisfying

Vk : (1− az) 7→ (1− akz).

3.2. Lambda schemes. In this section we will examine the scheme Λ and its dual. The scheme Λ
plays an important role in the theory of λ-rings which encode common structures in representation
theory and algebraic topology, see [AT69, Knu73]).

De�nition 3.23. The Lambda-scheme Λ is the ring scheme whose underlying additive group scheme
is de�ned by

Λ(R) = (1 + tRJzK)×.

The multiplicative structure is more complicated and we will explain it below. This scheme can be
represented by the ring Sym = Z[b1, b2, . . . ], since a homomorphism f : Sym→ R is determined by
where the bi are mapped to under f. These elements determine a power series

(3.24)
∑
i≥0

f(bi)zi,
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where we adopt the useful convention b0 = 1 and therefore f(b0) = 1. Under this correspondence
the additive group is described by

ε+ : Sym → Z bn 7→ 0
∆+ : Sym → Sym⊗ Sym bn 7→

∑n
i=0 bi ⊗ bn−i

χ+ : Sym → Sym bn 7→ −
∑n−1
i=0 χ+(bi)bn−i

for all n ≥ 1.

Since Λ takes values in formal rings we might expect it to be an inverse limit of regular schemes
and in fact it is. Since Sym ∼= colim Symn where Symn = Z[b1, . . . , bn], we obtain

symm = Spec Sym = Ring(colim Symn,−) ∼= lim Ring(Symn,−) = lim Spec Symn.

While it is clear that the Λ is an informal analogue of ŝymm0
, we have the following result whose

proof we defer until Section 4.

Theorem 3.25. The Cartier dual of ŝymm0
is Λ.

The Frobenius and Verschiebung maps de�ned above on ŝymm0
induce maps on the Cartier dual.

The conventional names for the duals of Fk and Vk are Vk and Fk respectively, i.e., the Frobenius
and Verschiebung are interchanged under Cartier duality. The reader can check that this de�nition
agrees with the obvious informal analogues of De�nitions 3.20 and 3.22.

3.3. Witt schemes. Witt schemes appear in many areas of mathematics, from starring roles in
the classi�cation of commutative group schemes and p-divisible groups ([Dem72]), to class �eld
theory for �elds of characteristic p (Witt's original purpose) and to cameo appearances in the Te-
ichmuller embedding of �nite �elds into rings of characteristic zero. The role that Witt schemes
(or more precisely, the truncated Witt schemes), play in commutative group schemes is re�ected in
the classi�cation of bicommutative Hopf algebras and their characterization by Dieudonne modules
([Goe98, Sch70]) . Their role in constructing characteristic 0 lifts of �nite �elds leads to their ap-
pearance in the construction of Landweber exact formal group laws and their associated cohomology
theories ([Rez98]).

The Witt scheme is a ring scheme whose underlying scheme is isomorphic to A∞, just like Λ. In
fact, there is an isomorphism of ring schemes between them. We will exploit this fact to circumvent
de�ning the Witt scheme's ring structure directly and save us the trouble of restating a number
of integrality lemmas (see [Haz78]). On representing rings, this isomorphism re�ects a di�erent
choice of generators which are more convenient for some purposes. For example, the formulas for
the primitive elements are simpler and satisfy some useful congruences. In Section 5 we will give
formulas relating the choices of generators.

De�nition 3.26. The Witt scheme W has the underlying scheme Spec(Z[θ1, θ2 . . . ]), and a ring
scheme structure which will be given in Corollary 3.28. We identify an element f ∈W(R) with the
power series ∏

(1− f(θn)tn)−1 = 1 + p1(f)t+ p2(f)t2 + · · · ∈ 1 + tRJtK.

For example,

p1(f) = f(θ1)
p2(f) = f(θ1)2 + f(θ2)
p3(f) = f(θ1)3 + f(θ1)f(θ2) + f(θ3).



DR
AF
T-
10
/1
9/
20
09
-1
7:2
9GENERALIZED WITT SCHEMES IN ALGEBRAIC TOPOLOGY 15

Examining these formulas for the coe�cients and comparing them to Equation 3.24 de�ning the
R-points of Λ, we can �nd a formula for f(θi) in terms of the f(bi), and conversely, inductively.
This leads us to the following theorem :

Theorem 3.27 (cf. [Haz78]). There is an isomorphism of schemes W ∼= Λ.

Proof. By the Yoneda lemma, the maps from W to Λ are in bijection with

Λ(Z[θ1, θ2, . . . ]) ∼= Ring(Z[b1, b2, . . . ],Z[θ1, θ2, . . . ]).

The power series ∏
(1− θntn)−1

de�nes an element of Λ(Z[θ1, θ2, . . . ]) and hence a map f. This map gives rise to maps

fn : Z[b1, . . . , bn]→ Z[θ1, . . . , θn].

Each of these algebras admits an augmentation that sends each of the polynomial generators to 0.
The induced map on indecomposables

fn : (b1, . . . , bn)/(b1, . . . , bn)2 → (θ1, . . . , θn)/(θ1, . . . , θn)2

is an isomorphism because we have the following isomorphism modulo decomposables∏
1≤i≤n

(1− θiti)−1 ≡
∏

1≤i≤n

(1 + θit
i)

≡ 1 +
∑

1≤i≤n

θit
i.

Using powers of the augmentation ideals to de�ne �ltrations on these algebras, we have an induced
isomorphism on the associated graded algebras

gr(Z[b1, . . . , bn])→ gr(Z[θ1, . . . , θn]).

With such a �ltration the associated graded of a polynomial algebra is itself, so we have an iso-
morphism between the truncated algebras Z[b1, . . . , bn] and Z[θ1, . . . , θn]. We obtain the desired
isomorphism by taking colimits. �

Corollary 3.28. The Witt scheme W admits the structure of a ring-scheme such that the map in
Theorem 3.27 is an isomorphism of ring-schemes.

Remark 3.29. We can consider this to be a de�nition of the ring-scheme structure on W.

Corollary 3.30. There is an isomorphism of formal group schemes Ŵ ∼= ŝymm0
.

4. Formal schemes arising from the cohomology of a space

Now we will try to apply the above theory to the co/homology of a space. We are particularly
interested in those spaces and cohomology theories that are connected to formal groups (see [Ada95,
Hop99, Rav00]).

Notation 4.1. If E is a cohomology theory and X a space then E∗(X) will always refer to the

unreduced E-cohomology of X. The reduced cohomology theory will be denoted Ẽ∗(X).

Notation 4.2. For a multiplicative cohomology theory E, we will adopt the standard convention of
writing E∗ for E

−∗(∗).

De�nition 4.3. A cohomology theory E is called even-periodic if
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(1) E is multiplicative (i.e., E takes values in graded rings).
(2) Eodd = 0
(3) There exists a unit x ∈ E2.

The standard examples include even-periodic ordinary cohomology HPR, complex K-theory
K, even-periodic Morava K-theory K(n), the Morava E-theories En, and even-periodic complex
cobordism MP. We typically recognize these theories by their coe�cient rings:

HPR∗ ∼= R[v, v−1]
K∗ ∼= Z[v, v−1]

K(n)∗ ∼= Fpn [v, v−1]

En∗ ∼= Wp(Fpn)Ju1, . . . , un−1K[v, v−1] (see Section 3.3)

MP∗ ∼= Z[b1, b2, . . . ][v, v−1],

where the grading is determined by putting all of the generators in degree 0 except for v which
lies in degree 2. A nice description of the properties of these cohomology theories can be found in
[Hop99, Rez98].

For the remainder of this chapter E will always denote some even-periodic cohomology theory.
Recall that the tensor product operation on vector bundles restricts to give a group operation

on isomorphism classes of line bundles, the unit coming from the one dimensional trivial bundle [1]
and the inverse of a bundle η is given by the dual bundle η∗. Since CP∞ is a model for BU(1) the
classifying space of 1-dimensional complex line-bundles we obtain a multiplication map

µ⊗ : CP∞ × CP∞ → CP∞

that makes CP∞ into a group object in hTop, the derived category of topological spaces.
Standard calculations (see [Hop99]) show that for an even-periodic cohomology theory E, we

have

(4.4) E0(CP∞) ∼= E0JxK

with the choice of isomorphism dependent on the choice of unit in De�nition 4.3. We also have
Kunneth isomorphisms

E0((CP∞)×n) ∼= E0(CP∞)⊗E0 · · · ⊗E0 E
0(CP∞).

Fixing an isomorphism as in Equation 4.4 canonically determines an isomorphism

E0((CP∞)×n) ∼= E0Jt1, . . . , tnK.

The map µ⊗ gives rise to the coproduct

∆⊗ : E0(CP∞) −→ E0(CP∞)⊗E0 E
0(CP∞)

E0JxK −→ E0Jx, yK
x 7→ FE(x, y).

The formal power series FE(x, y) is the formal group law associated to E with a speci�ed orientation
(which determines the isomorphism in Equation 4.4). A di�erent choice of isomorphism will give
rise to a formal group law of the form FE(λx, λy), for some unit λ ∈ E0.

Although the power series
∆⊗(x) = FE(x, y)

is called a formal group law, the map ∆⊗ actually de�nes a cogroup object in pro-rings. Passing to
the opposite category of formal schemes allows us to reverse the arrows and recover a group object.
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De�nition 4.5. Given a CW-complex X and an even-periodic cohomology theory E, we de�ne the
formal scheme XE associated to X and E by

XE = colim SpecE0(Xα),

where the �ltered system de�ning the colimit is given by the �ltration of X by its �nite subcomplexes
Xα.

Remark 4.6. Note thatXE is a covariant functor ofX,making the notation convenient for studying
diagrams of spaces. Also note that XE must not be confused with the Bous�eld localization X〈E〉,
of X with respect to a homology theory E.

If X is a �nite-dimensional CW-complex then XE is de�ned by a directed system with terminal
object SpecE0(X). It follows that XE is isomorphic to the ordinary scheme SpecE0(X).

De�nition 4.7. The formal group associated to an even-periodic cohomology theory E, ĜE is the
formal scheme CP∞E over E0, with the group structure induced by the tensor product of vector
bundles.

By well known calculations we can identify the formal group associated to K-theory with Ĝm

from Example 2.9 and the formal group associated to ordinary cohomology HPZ with Ĝa from
Example 2.8.

If X is a commutative H-group with H∗(X) even and torsion-free then the relevant Atiyah-
Hirzebruch and Kunneth spectral sequences collapse to show

E∗(X) ∼=E∗ ⊗H∗(X)

E∗(X ×X) ∼=E∗(X)⊗E∗ E∗(X)

From this we can see that the H-group structure on X makes SpecE∗X a group scheme.
Since H∗X is torsion-free and of �nite type then similar arguments show

E∗(X) ∼= ModE∗(E∗X,E∗).

It now follows that:

Proposition 4.8. Suppose X is a commutative H-group with H∗(X) even, torsion free, and of
�nite type. Then D SpecE0X ∼= XE .

Now we recall several well known calculations (see, for example, [Swi02]).

Proposition 4.9. The inclusion of a maximal torus

(S1)×n → U(n)

induces a map

E∗(BU(n))→ E∗((BS1)×n) ∼= E∗((CP∞)×n) ∼= E∗Jt1, . . . , tnK

which lifts to an isomorphism

E∗(BU(n)) ∼= E∗((CP∞)×n)Σn .

Example 4.10. Combining this with Theorem 3.6 we see that E∗BU(n) ∼= E∗Jσ1, . . . , σnK. It
follows that we can identify BU(n)E with ŝymmn × SpecE0.
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Proposition 4.11 ([AGP02, May99]). The functor K0(−) is represented by the space BU × Z.
The maps from BU(i) into BU(i+1), for each i, that classify adjoining a one dimensional trivial

bundle to the universal i-dimensional bundle, induce a map∐
i≥0

BU(i)→
∐
i≥0

BU(i)

that can be used to construct the following homotopy equivalence:

BU × Z ' hocolim

∐
i≥0

BU(i)→
∐
i≥0

BU(i)→
∐
i≥0

BU(i)→ . . .

 .
Example 4.12. Combining Proposition 4.11 with 4.10 we see that we can identify (BU×Z)E with

ŝymm× SpecE0 and BUE ≡ (BU × {0})E with ŝymm0 × SpecE0.

Using the construction of ŝymm0
as the colimit of the ŝymmn, or from the construction of BU

given above, we see that

E∗BU ∼= E∗Jσ1, σ2, . . .K.

Since BU satis�es the conditions of Proposition 4.8, we see that the Cartier dual of ŝymm0

is represented by Spec(E0BU). It is well known that, up to completion, the homology of BU is

self-dual as a Hopf algebra. It follows that Spec(E0BU) is the informal analogue of ŝymm0
and

Spec(E0BU) ∼= Λ× SpecE0.

We can now consolidate the work above.

Theorem 4.1. If E is an even-periodic ring spectrum then we have the following chain of group
scheme isomorphisms:

SpecE0BU ∼=Λ× SpecE0

∼=W× SpecE0.

We also have the following chain of formal group scheme isomorphisms:

BUE ∼=ŝymm0 × SpecE0

∼=Ŵ× SpecE0 ≡ DW× SpecE0

∼=Λ̂× SpecE0 ≡ DΛ× SpecE0.

Remark 4.13. We could have extended this chain of isomorphisms to connnect to the Burnside

ring of Ẑ, the necklace algebra, or to the curves functor [Haz08] if it were not for constraints on
time, space, and energy. These correspondences are too beautiful and common to avoid being
rediscovered again and again; this is especially true for the author. The extensive bibliography (471
entries!) in [Haz08] is a testament to this.

We conclude this section with a simple application of the above theorem. When working of
p-local ring the Cartier dual of the Witt scheme admits the following idempotent map of group
schemes:

(4.14) ε =
bW∑

gcd(n,p)=1

[
µ(n)
n

]
VnFn
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where µ(n) is the Möbius function de�ned by the recurrence relation

∑
d|n

µ(d) = δ1,n.

This idempotent map splits Ŵ into a countable product of group schemes. The image of the

idempotent is denoted Ŵp which is Cartier dual to the p-Witt scheme.
This determines a splitting of each of the formal group schemes in Theorem 4.1. In particular, it

determines a Hopf algebra splitting of E∗BU that corresponds to the generalized cohomology form
of Husemoller's splitting [Hus71]. Applying Cartier duality we obtain a splitting of E∗BU and the
image of the idempotent is self-dual (up to completion).

The essential part of the construction of this splitting, is the identi�cation of E∗BU with the free
commutative algebra Ẽ∗(CP∞). This is dual to the statement that E∗BU is the cofree coalgebra

on Ẽ∗(CP∞), which is a reformulation of the splitting principle for E∗BU.
One can also see that Equation 4.14 is exactly the formula for Quillen's idempotent [Qui69, 7]

on curves in a formal group, which he used to split MU(p). Indeed both splittings are constructed
in the same way.

5. The Chern classes of a tensor product of arbitrary vector bundles

Suppose we have two 3-dimensional complex vector bundles over some �xed space which have
E-theory Chern classes a1, a2, a3 and b1, b2, b3 respectively. The tensor product of these two bundles
is a 9-dimensional vector bundle and this operation de�nes a map of algebras:

∆ : E∗(BU(9)) ∼= E∗Jc1, . . . , c9K→ E∗Ja1, a2, a3K⊗E∗ E∗Jb1, b2, b3K.

By our form of the splitting principle (Theorem 3.9), we obtain formulas for this map (∆ cor-
responds to ⊗3,3). Even for such a small example the formulas already are quite complicated.
Computing the coproduct of higher Chern classes is greatly facilitated by using a computer and
we have implemented our calculations in Mathematica, although it is straightforward to implement
them in any symbolic computer package. In the �rst two examples below, we have grouped the
terms together to emphasize the symmetry in the expansions.

Due to obvious limitations on space and the reader's assumed interest, we have only included
the �rst few coproducts in each of the cases below. The author is not aware of such formulas
ever appearing in print and we record them for posterity, although our primary interest is in
demonstrating that through a limited range these formulas are computable by the above methods.

The simplest possible example is when E is HZ. In this case we are working with the additive
formal group law described above. In this particular case, one can �nd these formulas (in an
unexpanded form) in [MS74, p. 87-88].



DR
AF
T-
10
/1
9/
20
09
-1
7:2
9GENERALIZED WITT SCHEMES IN ALGEBRAIC TOPOLOGY 20

∆c1 = 3 (a1 ⊗ 1 + 1⊗ b1)

∆c2 = 3
(
(a2 + a2

1)⊗ 1 + 1⊗ (b2 + b21)
)

+ 8a1 ⊗ b1
∆c3 = (a3

1 + 6a1a2 + 3a3)⊗ 1 + 1⊗ (b31 + 6b1b2 + 3b3)

+ 7
(
a1 ⊗ (b21 + b2) + (a2

1 + a2)⊗ b1
)

∆c4 = + 3
(
(a2

1a2 + a2
2 + 2a1a3)⊗ 1 + 1⊗ (b22 + b21b2 + 2b1b3)

)
+ 2

(
(6a1a2 + 3a3 + a3

1)⊗ b1 + a1 ⊗ (6b1b2 + 3b3 + b31)
)

+ 3a2 ⊗ b2 + 5a2
1 ⊗ b21

+ 6
(
a2

1 ⊗ b2) + a2 ⊗ b21
)

When E = KU is equipped with the (E∞) orientation described above we obtain the following
coproduct formulas (here u ∈ K−2 is the Bott element):

∆c1 =3(a1 ⊗ 1 + 1⊗ b1)− ua1 ⊗ b1
∆c2 =3

(
(a2

1 + a2)⊗ 1 + 1⊗ (b21 + b2)
)

+ 8a1 ⊗ b1
− 2u

(
a1 ⊗ (b21 + b2) + (a2

1 + a2)⊗ b1
)

+ u2
(
a2

1 ⊗ b2 − 2a2 ⊗ b2 + a2 ⊗ b21
)

∆c3 =a3
1 ⊗ 1 + 1⊗ b31 + 6(a1a2 ⊗ 1 + 1⊗ b1b2) + 3(a3 ⊗ 1 + 1⊗ b3)

+ 7
(
a1 ⊗ (b21 + b2) + (a2

1 + a2)⊗ b1
)

+ u
[
−(a3

1 + 6a1a2 + 3a3)⊗ b1 − a1 ⊗ (b31 + 6b1b2 + 3b3)

−2(a2
1 ⊗ (b21 + b2) + (a2

1 + a2)⊗ b21)− 8a2 ⊗ b2
]

+ u2
[
a3

1 ⊗ b2 + a2 ⊗ b31 + 2(a1a2 ⊗ b21 + a2
1 ⊗ b1b2)

+3(a3 ⊗ b21 − 2a2 ⊗ b3 − 2a3 ⊗ b2 + a2
1 ⊗ b3)

]
+ u3

[
−(a3

1 ⊗ b3 + a1a2 ⊗ b1b2 + a3 ⊗ b31)

+3(a1a2 ⊗ b3 − a3 ⊗ b3 + a3 ⊗ b1b2)]

The above two complex oriented theories have the only formal group laws (up to isomorphism)
that are �nite. When working with another theory we are forced to use �nite expansions.

The formulas below are based on an expansion of the formal group law for BP, at the prime 3,
out to the 4th power in the �rst Chern class. We have chosen to use the Hazewinkel generators
since they provide a formal group law with integral coe�cients. Using these choices we obtain the
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following coproduct formulas for the tensor product of two 2-dimensional vector bundles.:

∆c1 =2 (a1 ⊗ 1 + v1(a1 ⊗ b2 + a2 ⊗ b1) + 1⊗ b1)

− v1

(
a1 ⊗ b21 + a2

1 ⊗ b1
)

∆c2 =− 5v2
1a1a2 ⊗ b1b2 − v1a1 ⊗ b31 + v1a1a2 ⊗ b1 + v1a1 ⊗ b1b2

+ v2
1a1a2 ⊗ b31 − 2v1a

2
1 ⊗ b21 + v2

1a
2
1 ⊗ b22 − v1a

3
1 ⊗ b1

+ v2
1a

3
1 ⊗ b1b2 + v2

1a
4
1 ⊗ b2 − 4v2

1a2a
2
1 ⊗ b2 + 8v1a2 ⊗ b2

− 4v2
1a2 ⊗ b21b2 + 2v2

1a2 ⊗ b22 + v2
1a2 ⊗ b41 + 2v2

1a
2
2 ⊗ b2

+ v2
1a

2
2 ⊗ b21 + 3a1 ⊗ b1 + a2

1 ⊗ 1 + 2a2 ⊗ 1 + 1⊗ b21 + 2⊗ b2
∆c3 =− v1a1a2 ⊗ b21 + 2v1a1a2b2 + 2v2

1a1a2 ⊗ b22
− v3

1a1a2 ⊗ b21b22 + 2v3
1a1a2 ⊗ b32 − 4v2

1a1a2 ⊗ b21b2
− 6v2

1a1a
2
2 ⊗ b2 + 2v3

1a1a
2
2 ⊗ b21b2 + a1 ⊗ b21 + 2a1 ⊗ b2

− 2v1a1 ⊗ b21b2 + 2v1a1 ⊗ b22 + v2
1a1a2 ⊗ b41 − v3

1a
2
1a

2
2 ⊗ b1b2

+ a2
1 ⊗ b1 − v1a

2
1 ⊗ b31 − v1a

2
1b1b2 + v2

1a
2
1a2 ⊗ b31 + v2

1a
2
1 ⊗ b1b22

+ 2v3
1a

3
1a2 ⊗ b22 − v1a

3
1 ⊗ b21 + v2

1a
3
1 ⊗ b21b2 + v2

1a
4
1 ⊗ b1b2

− 2v1a2 ⊗ a2
1 ⊗ b1 − 4v2

1a2a
2
1 ⊗ b1b2 − v3

1a
2
1a2 ⊗ b31b2

+ 2v3
1a

2
1a2 ⊗ b1b22 + 2v2

1a
3
1a2 ⊗ b2 − v3

1a
3
1a2 ⊗ b21b2

+ 2a2 ⊗ b1 + 2v1a2 ⊗ b1b2 + 2v2
1a2 ⊗ b31b2

− 6v2
1a2 ⊗ b1b22 − 6v3

1a1a
2
2 ⊗ b22 + 2v1a

2
2 ⊗ b1 + 2v2

1a
2
2 ⊗ b1b2

+ 2v3
1a

2
2 ⊗ b31b2 − 6v3

1a
2
2 ⊗ b1b22 + v2

1a1a
2
2 ⊗ b21

+ 2v3
1a

3
2 ⊗ b1b2 + 2a1a2 ⊗ 1 + 2⊗ b1b2
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